Application of separable parameter space techniques to multi-tracer PET compartment modeling.

نویسندگان

  • Jeff L Zhang
  • A Michael Morey
  • Dan J Kadrmas
چکیده

Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propagation of Blood Function Errors to the Estimates of Kinetic Parameters with Dynamic PET

Dynamic PET, in contrast to static PET, can identify temporal variations in the radiotracer concentration. Mathematical modeling of the tissue of interest in dynamic PET can be simplified using compartment models as a linear system where the time activity curve of a specific tissue is the convolution of the tracer concentration in the plasma and the impulse response of the tissue containing kin...

متن کامل

Quantitative Methods for Tumor Imaging with Dynamic PET

There is always a need and drive to improve modern cancer care. Dynamic positron emission tomography (PET) offers the advantage of in vivo functional imaging, combined with the ability to follow the physiological processes over time. In addition, by applying tracer kinetic modeling to the dynamic PET data, thus estimating pharmacokinetic parameters associated to e.g. glucose metabolism, cell pr...

متن کامل

Using DCE-MRI Data to Constrain and Simplify PET Kinetic Modeling

INTRODUCTION Quantitative modeling of kinetic PET data can report the distribution and retention of various radiotracers (1). However, such modeling may be limited by an inability to separate the tissue time activity curve (TAC) into separate blood, extravascular extracellular space (EES), and extravascular intracellular space (EIS) components, as well as the large number of physiologic paramet...

متن کامل

Pharmacokinetic modeling of a novel hypoxia PET tracer [18F]HX4 in patients with non-small cell lung cancer

BACKGROUND [18F]HX4 is a promising new PET tracer developed to identify hypoxic areas in tumor tissue. This study analyzes [18F]HX4 kinetics and assesses the performance of simplified methods for quantification of [18F]HX4 uptake. To this end, eight patients with non-small cell lung cancer received dynamic PET scans at three different time points (0, 120, and 240 min) after injection of 426 ± 7...

متن کامل

Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations

We show how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data can constrain a compartmental model for analyzing dynamic positron emission tomography (PET) data. We first develop the theory that enables the use of DCE-MRI data to separate whole tissue time activity curves (TACs) available from dynamic PET data into individual TACs associated with the blood space, the extravascu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 61 3  شماره 

صفحات  -

تاریخ انتشار 2016